19 research outputs found

    Land cover change from national to global scales:A spatiotemporal assessment of trajectories, transitions and drivers

    Get PDF
    Changes in global land cover (LC) have significant consequences for global environmental change, impacting the sustainability of biogeochemical cycles, ecosystem services, biodiversity, and food security. Different forms of LC change have taken place across the world in recent decades due to a combination of natural and anthropogenic drivers, however, the types of change and rates of change have traditionally been hard to quantify. This thesis exploits the properties of the recently released ESA-CCI-LC product – an internally consistent, high-resolution annual time-series of global LC extending from 1992 to 2018. Specifically, this thesis uses a combination of trajectories and transition maps to quantify LC changes over time at national, continental and global scales, in order to develop a deeper understanding of what, where and when significant changes in LC have taken place and relates these to natural and anthropogenic drivers. This thesis presents three analytical chapters that contribute to achieving the objectives and the overarching aim of the thesis. The first analytical chapter initially focuses on the Nile Delta region of Egypt, one of the most densely populated and rapidly urbanising regions globally, to quantify historic rates of urbanisation across the fertile agricultural land, before modelling a series of alternative futures in which these lands are largely protected from future urban expansion. The results show that 74,600 hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion between 1992 and 2015. Furthermore, a scenario that encouraged urban expansion into the desert and adjacent to areas of existing high population density could be achieved, hence preserving large areas of fertile agricultural land within the Nile Delta. The second analytical chapter goes on to examine LC changes across sub-Saharan Africa (SSA), a complex and diverse environment, through the joint lenses of political regions and ecoregions, differentiating between natural and anthropogenic signals of change and relating to likely drivers. The results reveal key LC change processes at a range of spatial scales, and identify hotspots of LC change. The major five key LC change processes were: (i) “gain of dry forests” covered the largest extent and was distributed across the whole of SSA; (ii) “greening of deserts” found adjacent to desert areas (e.g., the Sahel belt); (iii) “loss of tree-dominated savanna” extending mainly across South-eastern Africa; (iv) “loss of shrub-dominated savanna” stretching across West Africa, and “loss of tropical rainforests” unexpectedly covering the smallest extent, mainly in the DRC, West Africa and Madagascar. The final analytical chapter considers LC change at the global scale, providing a comprehensive assessment of LC gains and losses, trajectories and transitions, including a complete assessment of associated uncertainties. This chapter highlights variability between continents and identifies locations of high LC dynamism, recognising global hotspots for sustainability challenges. At the national scale, the chapter identifies the top 10 countries with the largest percentages of forest loss and urban expansion globally. The results show that the majority of these countries have stabilised their forest losses, however, urban expansion was consistently on the rise in all countries. The thesis concludes with recommendations for future research as global LC products become more refined (spatially, temporally and thematically) allowing deeper insights into the causes and consequences of global LC change to be determined

    Global land cover trajectories and transitions

    Get PDF
    Global land cover (LC) changes threaten sustainability and yet we lack a comprehensive understanding of the gains and losses of LC types, including the magnitudes, locations and timings of transitions. We used a novel, fine-resolution and temporally consistent satellite-derived dataset covering the entire Earth annually from 1992 to 2018 to quantify LC changes across a range of scales. At global and continental scales, the observed trajectories of change for most LC types were fairly smooth and consistent in direction through time. We show these observed trajectories in the context of error margins produced by extrapolating previously published accuracy metrics associated with the LC dataset. For many LC classes the observed changes were found to be within the error margins. However, an important exception was the increase in urban land, which was consistently larger than the error margins, and for which the LC transition was unidirectional. An advantage of analysing the global, fine spatial resolution LC time-series dataset is the ability to identify where and when LC changes have taken place on the Earth. We present LC change maps and trajectories that identify locations with high dynamism, and which pose significant sustainability challenges. We focused on forest loss and urban growth at the national scale, identifying the top 10 countries with the largest percentages of forest loss and urban growth globally. Crucially, we found that most of these ‘worst-case’ countries have stabilized their forest losses, although urban expansion was monotonic in all cases. These findings provide crucial information to support progress towards the UN’s SDGs

    A rare case of lethal campomelic dysplasia

    Get PDF
    Campomelic dysplasia is a rare and mostly lethal congenital malformation. It is known as an autosomal dominant disorder due to mutations in SOX9, a member of the SOX (SRY-related HMG box) gene family. Here we report a case of a 26 years old primigravida married for 3 years with a history of consanguinity. She was impregnated by intracytoplasmic sperm injection (ICSI) due to male factor infertility. This mostly lethal skeletal anomaly was diagnosed by detailed ultrasonography in the late second trimester. She underwent an induction of labor termination due to intrauterine fetal demise

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Background: Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. // Methods: We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung's disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. // Findings: We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung's disease) from 264 hospitals (89 in high-income countries, 166 in middle-income countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in low-income countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. // Interpretation: Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between low-income, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Monitoring Agricultural Expansion in a Newly Reclaimed Area in the Western Nile Delta of Egypt Using Landsat Imageries

    No full text
    Detection and monitoring land use/land cover (LULC) changes using historical multi-temporal remote sensing data is greatly important for providing an effective and robust assessment of the human-induced impacts on the environmental conditions. It is extremely recommended for LULC studies related to evaluating the sustainability of changing areas over time. The agricultural sector in Egypt is one of the crucial pillars of the national economy. The amount of traditional agricultural land (Old Lands) in the Nile Delta had a significant decline over the past few decades due to urban encroachment. Consequently, several land reclamation initiatives and policies have been adopted by the Egyptian government to expand agricultural land in desert areas (New Lands) adjacent to both fringes of the Nile delta. Tiba district is one of those newly reclaimed areas located in the western Nile Delta of Egypt with a total area of 125 km2. The primary objective of this article was to identify, monitor and quantify historical LULC changes in Tiba district using historical multi-temporal Landsat imageries for six different dates acquired from 1988 to 2018. The temporal and historical changes that occurred were identified using supervised maximum likelihood classification (MLC) approach. Three major LULC classes were distinguished and mapped: (1) Agricultural land; (2) barren land; and (3) urban land. In 1988, Tiba district was 100% barren land; however, during the 1990s, the governmental reclamation projects have led to significant changes in LULC. The produced LULC maps from performing the MLC demonstrated that Tiba district had experienced significant agricultural land expansion from 0% in 1988 to occupy 84% in 2018, whilst, barren land area has decreased from 100% in 1988 to occupy only 7% in 2018. This reflects the successful governmental initiatives for agricultural expansion in desert areas located in the western Nile Delta of Egypt

    Dramatic Loss of Agricultural Land Due to Urban Expansion Threatens Food Security in the Nile Delta, Egypt.

    No full text
    Egypt has one of the largest and fastest growing populations in the world. However, nearly 96% of the total land area is uninhabited desert and 96% of the population is concentrated around the River Nile valley and the Delta. This unbalanced distribution and dramatically rising population have caused severe socio-economic problems. In this research, 24 land use/land cover (LULC) maps from 1992 to 2015 were used to monitor LULC changes in the Nile Delta and quantify the rates and types of LULC transitions. The results show that 74,600 hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion over the 24 year period at an average rate of 3108 ha year-1, whilst 206,100 hectares of bare land was converted to agricultural land (New Lands) at an average rate of 8588 ha year-1. A Cellular Automata-Markov (CA Markov) integrated model was used to simulate future alternative LULC change scenarios. Under a Business as Usual scenario, 87,000 hectares of land transitioned from agricultural land to urban areas by 2030, posing a threat to the agricultural sector sustainability and food security in Egypt. Three alternative future scenarios were developed to promote urban development elsewhere, hence, with potential to preserve the fertile soils of the Nile Delta. A scenario which permitted urban expansion into the desert only preserved the largest amount of agricultural land in the Nile Delta. However, a scenario that encouraged urban expansion into the desert and adjacent to areas of existing high population density resulted in almost the same area of agricultural land being preserved. The alternative future scenarios are valuable for supporting policy development and planning decisions in Egypt and demonstrating that continued urban development is possible while minimising the threats to environmental sustainability and national food security

    Dramatic loss of agricultural land due to urban expansion threatens food security in the Nile Delta, Egypt

    No full text
    Egypt has one of the largest and fastest growing populations in the world. However, nearly 96% of the total land area is uninhabited desert and 96% of the population is concentrated around the River Nile valley and the Delta. This unbalanced distribution and dramatically rising population have caused severe socio-economic problems. In this research, 24 land use/land cover (LULC) maps from 1992 to 2015 were used to monitor LULC changes in the Nile Delta and quantify the rates and types of LULC transitions. The results show that 74,600 hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion over the 24 year period at an average rate of 3108 ha year -1 , whilst 206,100 hectares of bare land was converted to agricultural land (New Lands) at an average rate of 8588 ha year -1 . A Cellular Automata-Markov (CA-Markov) integrated model was used to simulate future alternative LULC change scenarios. Under a Business as Usual scenario, 87,000 hectares of land transitioned from agricultural land to urban areas by 2030, posing a threat to the agricultural sector sustainability and food security in Egypt. Three alternative future scenarios were developed to promote urban development elsewhere, hence, with potential to preserve the fertile soils of the Nile Delta. A scenario which permitted urban expansion into the desert only preserved the largest amount of agricultural land in the Nile Delta. However, a scenario that encouraged urban expansion into the desert and adjacent to areas of existing high population density resulted in almost the same area of agricultural land being preserved. The alternative future scenarios are valuable for supporting policy development and planning decisions in Egypt and demonstrating that continued urban development is possible while minimising the threats to environmental sustainability and national food security. </p
    corecore